شناسایی عوامل کلیدی موفقیت پیاده‌سازی نظام تحلیل سرمایه انسانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو دکتری مدیریت دولتی، گرایش مدیریت منابع انسانی، دانشکده مدیریت دانشگاه تربیت مدرس، تهران، ایران

2 نویسنده مسئول: دانشیار، مدیریت دولتی، گرایش مدیریت منابع انسانی، دانشکده مدیریت دانشگاه تربیت مدرس، تهران، ایران

3 استاد، مدیریت دولتی، گرایش مدیریت منابع انسانی، دانشکده مدیریت دانشگاه تربیت مدرس، تهران، ایران

چکیده

سازمان‌ها به‌دنبال راه‌های مختلفی هستند تا از مزایای تحلیل سرمایه انسانی جهت بهینه‌سازی تصمیم‌گیری‌های خود استفاده کنند و اثرات آن تصمیمات را بر عملکرد سازمان مورد بررسی قرار دهند، اما علی‌رغم تمام این تلاش‌ها نزدیک به 80 درصد سازمان‌ها در این راه موفق نبوده‌اند. ازاین‌رو هدف از پژوهش حاضر شناسایی عوامل کلیدی موفقیت تحلیل سرمایه انسانی در سازمان‌ها می‌باشد. دراین‌راستا، از روش کیفی (تحلیل مضمون) و کمی (دلفی) برای پاسخگویی به سؤال پژوهش استفاده شده است. پژوهشگران بعد از مرور ادبیات پژوهش و انجام مصاحبه با 20 نفر از متولیان تحلیل سرمایه انسانی، ازطریق تحلیل مضمون به 98 عامل رسیدند که درنهایت با انجام دو دور دلفی از خبرگان این حوزه،50 عامل را به‌عنوان عوامل کلیدی موفقیت تحلیل سرمایه انسانی شناسایی کرده‌اند. عوامل شناسایی‌شده در دو دسته کلی ظرفیت‌های فرایندی و ظرفیت‌های سازمانی تقسیم شده‌اند که ظرفیت فرایند جمع‌آوری داده، ظرفیت فرایند تحلیل داده و ظرفیت فرایند منابع انسانی ازجمله زیرمجموعه‌های ظرفیت‌های فرایندی شناسایی شده‌اند. در دسته ظرفیت سازمانی نیز عوامل شناسایی‌شده به ظرفیت نیروی انسانی، ظرفیت فناوری و ظرفیت  سیاسی دسته‌بندی شده‌اند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Identifying the Key Factors of the Successful Implementation of Human Capital Analysis System

نویسندگان [English]

  • Mahsa Fazel 1
  • Ahmad ali Khaefelahi 2
  • hassan danaeefard 3
1 PhD candidate in public administration, human resources management, Faculty of Management, Tarbiyat Modarres University, Tehran, Iran
2 Associate professor in public administration, human resource management, Faculty of Management, Tarbiyat Modarres University, Tehran, Iran
3 Full professor in public management, human resources management, Faculty of Management, Tarbiyat Modarres University, Tehran, Iran
چکیده [English]

Organizations are in quest for different ways to apply the benefits of human capital analysis to optimize their decisions and assess the effects of the decisions on the performance of the organization. Yet, despite all these efforts, nearly 80 percent of organizations have not been successful in their attempts. Hence, this study is intended to identify the key factors of the success of human capital analysis in organizations. In this regard, qualitative (thematic analysis) and quantitative (Delphi) methods are employed in this research to answer the research questions. Having reviewed research literature and conducting interviews with 20 people in charge of human capital analysis, the researchers arrived at 98 factors through thematic analysis. Finally, conducting two rounds of Delphi method with the experts of this field, the researchers identified 50 factors as the key features for the success of human capital analysis. The identified factors were classified into two general categories of process capacities and organizational capacities.  The capacities of data collection, data analysis and human resource processes, comprised the subcategories of process capacities. The categories of organizational capacity included manpower, technological and political capacities.   

کلیدواژه‌ها [English]

  • data analysis
  • human capital analysis
  • key factors of success
  • thematic analysis
  • Delphi method
بازرگان، عباس (1387)، مقدمه‌ای بر روش‌های تحقیق کیفی و آمیخته: رویکردهای متداول در علوم رفتاری، انتشارات دیدار.
تاجی، زهرا و بردبار، غلامرضا (1394)، بررسی رابطه رهبری تحول‌آفرین و چابکی منابع انسانی، فصلنامه پژوهش‌های منابع انسانی دانشگاه امام حسین (ع)، سال هفتم، شماره2، تابستان، 1394: 153-177.
حسینی سرخوش، سیدمهدی؛ فرهی بوزنجانی، برزو و سنجقی، محمدابراهیم (1389)، اثر میانجی‌گری فرهنگ سازمانی بر رابطه بین رهبر تحول‌آفرین و تعهد سازمانی، فصلنامه پژوهش‌های منابع انسانی دانشگاه امام حسین (ع)، سال دوم، شماره 1، شماره پیاپی 5، زمستان 1388: 87-105.
مرادی، کیوان؛ تقوی‌فرد، محمدتقی و ملکی حسن‌وند، مسلم (1395)، ارزیابی سطح بلوغ مدیریت سرمایه انسانی در آموزش عالی، فصلنامه پژوهش‌های منابع انسانی دانشگاه امام حسین (ع)، سال هشتم، شماره 3، شماره پیاپی 25، پاییز 1395: 211-237.
وفاخواه، شادی؛ یارمحمدی، مرتضی و تمجید یامچلو، علی‌رضا (1396)، بررسی تأثیر گونه‌های فرهنگ سازمانی بر فرایندهای منابع انسانی پروژه، فصلنامه پژوهش‌های منابع انسانی دانشگاه امام حسین (ع)، سال دهم، شماره 1، شماره پیاپی31، بهار1397: 75-100.
Adrian, C., Abdullah, R., Atan, R., & Jusoh, Y. Y. (2017, July). Factors influencing to the implementation success of big data analytics: A systematic literature review. In 2017 international conference on research and innovation in information systems (ICRIIS) (pp. 1-6). IEEE.
Levenson, A., & Fink, A. (2017). Human capital analytics: too much data and analysis, not enough models and business insights. J Organ Eff People Perform 4 (2): 145–156.
Angrave, D., Charlwood, A., Kirkpatrick, I., Lawrence, M., & Stuart, M. (2016). HR and analytics: why HR is set to fail the big data challenge. Human Resource Management Journal, 26(1), 1-11.
Aral, S., Brynjolfsson, E., & Wu, L. (2012). Three-way complementarities: Performance pay, human resource analytics, and information technology. Management Science, 58(5), 913-931.
Bassi, L. (2011). Raging debates in HR analytics. People and Strategy, 34(2), 14.
Bersin, J., Houston, J., & Kester, B. (2014). Talent Analytics in practice: Go from talking to delivering on big data. Deloitte University Press. Date Accessed, 3(01), 2015.
Clancy, T. R., Bowles, K. H., Gelinas, L., Androwich, I., Delaney, C., Matney, S., ... & Westra, B. (2014). A call to action: Engage in big data science. Nursing Outlook, 62(1), 64-65.
Coco, C. T. (2011). Connecting people investments and business outcomes at Lowe's: using value linkage analytics to link employee engagement to business performance. People and Strategy, 34(2), 28.
Dai, L., Gao, X., Guo, Y., Xiao, J., & Zhang, Z. (2012). Bioinformatics clouds for big data manipulation. Biology direct, 7(1), 1-7.
Daradkeh, M. (2019). Critical success factors of enterprise data analytics and visualization ecosystem: an interview study. International Journal of Information Technology Project Management (IJITPM), 10(3), 34-55..
Trends, G. H. C. (2016). Deloitte University Press. United States.
Douthitt, S., & Mondore, S. (2014). Creating a business-focused HR function with analytics and integrated talent management. People and Strategy, 36(4), 16.
Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Human Resource Management, 35(2), 137–144.
Garmaki, M., Boughzala, I., & Wamba, S. F. (2016, June). The effect of Big Data Analytics Capability on Firm Performance. In PACIS (p. 301).
Ghasemaghaei, M. (2020). The role of positive and negative valence factors on the impact of bigness of data on big data analytics usage. International Journal of Information Management, 50, 395-404.
Giuffrida, M. (2014). Unleashing the power of talent analytics in federal government. Public Manager, 43, 7–10
Green, D. (2017). The best practices to excel at people analytics. Journal of Organizational Effectiveness: People and Performance.
Harper, E. (2013). The economic value of health care data. Nurse Administration Quarterly, 37(2), 105-108.
Harris, J. G., Craig, E., & Light, D. A. (2011). Talent and analytics: new approaches, higher ROI. Journal of Business Strategy.
Heitmueller A, Henderson S, Warburton W, Elmagarmid A and Darzi A (2014) Developing public policy to advance the use of big data in health care. Health Affairs 33(9): 1523–1530.
Isson, J. P., & Harriott, J. S. (2016). People analytics in the era of big data: Changing the way you attract, acquire, develop, and retain talent. John Wiley & Sons Inc
Janssen, M., van der Voort, H., & Wahyudi, A. (2017). Factors influencing big data decision-making quality. Journal of Business Research, 70, 338-345.
Ji-fan Ren, S., Fosso Wamba, S., Akter, S., Dubey, R., & Childe, S. J. (2017). Modelling quality dynamics, business value and firm performance in a big data analytics environment. International Journal of Production Research, 55(17), 5011-5026.
Kapoor, B., & Kabra, Y. (2014). Current and future trends in human resources analytics adoption. Journal of Cases on Information Technology (JCIT), 16(1), 50-59.
Kim, M. K., & Park, J. H. (2017). Identifying and prioritizing critical factors for promoting the implementation and usage of big data in healthcare. Information Development, 33(3), 257-269.
Kremer, K. (2018). HR analytics and its moderating factors. Vezetéstudomány-Budapest Management Review, 49(11), 62-68.
Kum, Hye-Chung, Ashok Krishnamurthy, Ashwin Machanavajjhala, and Stanley C. Ahalt. "Social genome: Putting big data to work for population informatics." Computer 47, no. 1 (2013): 56-63.
Kuo MH, Sahama T, Kushniruk AW, Borycki EM and Grunwell DK (2014) Health big data analytics: current perspectives, challenges and potential solutions. International Journal of Big Data Intelligence 1(1-2): 114–126.
Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & management, 40(3), 191-204
Lismont, J., Vanthienen, J., Baesens, B., & Lemahieu, W. (2017). Defining analytics maturity indicators: A survey approach. International Journal of Information Management, 37(3), 114-124.
Mare, V. (2013). The big challenge of big data. Nature, 498, 255-259.
Marler, J. H. – Boudreau, J. W. (2017): An evidence-based review of talent analytics. The International Journal of Human Resource Management, 28(1), 3–26.
Miller, G. J. (2018). Quantitative Comparison of Big Data Analytics and Business Intelligence Project Success Factors. In Information Technology for Management: Emerging Research and Applications (pp. 53-72). Springer, Cham.
Minbaeva, D. B. (2018). Building credible human capital analytics for organizational competitive advantage. Human Resource Management, 57(3), 701-713.
Mondare, S., Douthitt, S., & Carson, M. (2011). Maximizing the impact and effectiveness of HR Analytics to drive business outcomes. People & Strategy, 34, 20–27.
Parks, R., & Thambusamy, R. (2017). Understanding business analytics success and impact: A qualitative study. Information Systems Education Journal, 15(6), 43.
Rasmussen, T., & Ulrich, D. (2015). Learning from practice: How HR Analytics avoids being a management fad. Organizational Dynamics, 44, 236–242.
Schiemann, W. A., Seibert, J. H., & Blankenship, M. H. (2018). Putting human capital analytics to work: Predicting and driving business success. Human Resource Management, 57(3), 795-807
Song TM and Ryu S (2015) Big data analysis framework for healthcare and social sectors in Korea. Healthcare Informatics Research 21(1): 3–9.
Stone, D. L., Deadrick, D. L., Lukaszewski, K. M., & Johnson, R. (2015). The influence of technology on the future of human resource management. Human resource management review, 25(2), 216-231.
Sullivan, J. (2013). How Google is using people analytics to completely reinvent HR. TLNT: The Business of HR, 26, 1-18.
Davenport, T. H. (2014). How strategists use “big data” to support internal business decisions, discovery and production. Strategy & Leadership.
Tursunbayeva, A., Bunduchi, R., Franco, M., & Pagliari, C. (2016). Human resource information systems in health care: A systematic evidence review. Journal of the American Medical Informatics Association, 633–654.
Ulrich, D. – Dulebohn, J. (2015): Are we there yet? What’s next for HR? Human Resource Management Review, Vol. 25, pp. 188–204
Vithiatharan RN (2014) The potentials and challenges of big data in public health. The 3rd Australian eHealth Informatics and Security Conference, 2014. Edith Cowan University, Research Online: 21–27.
Walsh, K. – Sturman, M. (2010): Key issues in strategic human resources. The Scholarly Commons. School of Hotel Administration Collection
Wang and T. Byrd, “Business Analytics-Enabled Decision Making Effectiveness through Knowledge Absorptive Capacity in Health Care,” J. Knowl. Manag., no. January, 2017.
Wang Y, Kung L, Ting C and Byrd TA (2015) Beyond a technical perspective: Understanding big data capabilities in health care. In: 48th Annual Hawaii International Conference on System Sciences(HICSS), Kauai, Hawaii, January 5(8), 2015.
Wang, Y, Kung L, & Hajli, N. (2017). Exploring the path to big data analytics success in healthcare. Journal of Business Research, 70, 287-299
Wang, Y, Kung L, and T. A. Byrd, “Big Data Analytics: Understanding Its Capabilities and Potential Benefits for Healthcare Organizations,” Technol. Forecast. Soc. Change, 2016.
Wang, Y, A. Jones-farmer, and L. Kung, (2015)“Managing Big Data for Firm Performance : A Configurational Approach,” Twenty-first Am. Conf. Inf. Syst., pp. 1–9, 2015
proach,” Twenty-first Am. Conf. Inf. Syst., pp. 1–9, 2015